Compositional dependability analysis of dynamic systems with uncertainty

نویسنده

  • Sohag Kabir
چکیده

Over the past two decades, research has focused on simplifying dependability analysis by looking at how we can synthesise dependability information from system models automatically. This has led to the field of model-based safety assessment (MBSA), which has attracted a significant amount of interest from industry, academia, and government agencies. Different model-based safety analysis methods, such as Hierarchically Performed Hazard Origin & Propagation Studies (HiP-HOPS), are increasingly applied by industry for dependability analysis of safety-critical systems. Such systems may feature multiple modes of operation where the behaviour of the systems and the interactions between system components can change according to what modes of operation the systems are in. MBSA techniques usually combine different classical safety analysis approaches to allow the analysts to perform safety analyses automatically or semi-automatically. For example, HiP-HOPS is a state-of-the-art MBSA approach which enhances an architectural model of a system with logical failure annotations to allow safety studies such as Fault Tree Analysis (FTA) and Failure Modes and Effects Analysis (FMEA). In this way it shows how the failure of a single component or combinations of failures of different components can lead to system failure. As systems are getting more complex and their behaviour becomes more dynamic, capturing this dynamic behaviour and the many possible interactions between the components is necessary to develop an accurate failure model. One of the ways of modelling this dynamic behaviour is with a state-transition diagram. Introducing a dynamic model compatible with the existing architectural information of systems can provide significant benefits in terms of accurate representation and expressiveness when analysing the dynamic behaviour of modern large-scale and complex safety-critical systems. Thus the first key contribution of this thesis is a methodology to enable MBSA techniques to model dynamic behaviour of systems. This thesis demonstrates the use of this methodology using the HiP-HOPS tool as an example, and thus extends HiP-HOPS with state-transition annotations. This extension allows HiP-HOPS to model more complex dynamic scenarios and perform compositional dynamic dependability analysis of complex systems by generating Pandora temporal fault trees (TFTs). As TFTs capture state, the techniques used for solving classical FTs are not suitable to solve them. They require a state space solution for quantification of probability. This thesis therefore proposes two methodologies based on Petri Nets and Bayesian Networks to provide state space solutions to Pandora TFTs. Uncertainty is another important (yet incomplete) area of MBSA: typical MBSA approaches are not capable of performing quantitative analysis under uncertainty. Therefore, in addition to the above contributions, this thesis proposes a fuzzy set theory based methodology to quantify Pandora temporal fault trees with uncertainty in failure data of components.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Planning the Expansion of Electric Energy Distribution Systems Considering Distributed Generation Resources in the Presence of Power Demand Uncertainty

In this paper, a new strategy based on a dynamic (time-based) model is proposed for expansion planning of electrical energy distribution systems, taking into account distributed generation resources and advantage of the techno-economic approach. In addition to optimal placement and capacity, the proposed model is able to determine the timing of installation / reinforcement of expansion options....

متن کامل

Rich Interfaces for Dependability: Compositional Methods for Dynamic Fault Trees and Arcade models

This paper discusses two behavioural interfaces for reliability analysis: dynamic fault trees, which model the system reliability in terms of the reliability of its components and Arcade, which models the system reliability at an architectural level. For both formalisms, the reliability is analyzed by transforming the DFT or Arcade model to a set of input-output Markov Chains. By using composit...

متن کامل

Comparative Study of Random Matrices Capability in Uncertainty Detection of Pier’s Dynamics

Because of random nature of many dependent variables in coastal engineering, treatment of effective parameters is generally associated with uncertainty. Numerical models are often used for dynamic analysis of complex structures, including mechanical systems. Furthermore, deterministic models are not sufficient for exact anticipation of structure’s dynamic response, but probabilistic models...

متن کامل

A Bayesian Model for Predicting Reliability of Software Systems at the Architectural Level

Modern society relies heavily on complex software systems for everyday activities. Dependability of these systems thus has become a critical feature that determines which products are going to be successfully and widely adopted. In this paper, we present an approach to modeling reliability of software systems at the architectural level. Dynamic Bayesian Networks are used to build a stochastic r...

متن کامل

From Concurrency Models to Numbers - Performance and Dependability

Discrete-state Markov processes are very common models used for performance and dependability evaluation of, for example, distributed information and communication systems. Over the last fifteen years, compositional model construction and model checking algorithms have been studied for these processes, and variations thereof, especially processes incorporating nondeterministic choices. In this ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016